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Abstract

A study of various methods of computational
fluid dynamics (CFD) was performed to understand
their effects on the analysis of the flow field induced
by the rapid collapse of a flexible bump in an annu-
lar duct with initially stagnant conditions. This flow
represents a good test case for CFD methods for de-
forming boundaries because the flow is due entirely
to the boundary motion. The study examined meth-
ods for implementing explicit and implicit time inte-
gration, modeling the bump collapse, imposing mov-
ing surface boundary conditions, modeling the grid
dynamics, computing the numerical flux, and im-
posing the geometric conservation law. Good agree-
ment was obtained between the CFD results and the
time-varying static pressure readings obtained from
an experiment. Significant results showed the cru-
cial importance of the bump collapse model and the
wall boundary conditions. The geometric conserva-
tion law was not of critical importance.

Introduction

The methods of computational fluid dynamics
(CFD) are increasingly being applied to problems
involving the relative motion of the boundaries of
a flow domain!. The significance of the boundary
motion on the flow is determined by the amount of
momentum transfer between the moving boundary
and the fluid. This is determined by the velocity of
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the moving boundary with respect to the velocity
of the local flow and the spatial extent of the mov-
ing boundary. As an example, consider an object
being dropped from an aircraft traveling at Mach
0.6. In a stable release, the vertical speed of the ob-
ject relative to the aircraft is determined by gravita-
tional acceleration. At one meter from the aircraft,
the vertical speed of the object is about 3% of the
freestream velocity of the fluid. Another example is
a high-speed, variable geometry inlet which involves
centerbody motion occurring over a one second time
interval. If the throat Mach number is 1.2, the speed
of the centerbody surfaces relative to the fluid speed
is less than 1% of the fluid speed.

The focus of this paper is on rapid boundary mo-
tion in which the speed of the boundary motion ap-
proaches the speed of the fluid motion. CFD meth-
ods for moving boundaries are comsiderably chal-
lenged since the moving boundary has a significant
influence on the flow.

Recently, experiments were conducted at the
University of Cincinnati as part of an effort to design
a mechanism capable of creating a planar pressure
pulse within an annular duct through the rapid col-
lapse of a flexible bump located on the hub of the
duct?3. The overall objective was the investigation
of the interaction of the pulses with the compressor
fan of a jet engine in which the mean flow at the com-
pressor face is approximately Mach 0.2. During the
design of the pulse generation concept, CFD meth-
ods were approached to validate the concept; how-
ever, it was unsure if the CFD methods themselves
were verified to produce accurate results. Thus, a
lower cost experiment was designed in which the
bump collapse occurred in stagnant conditions (no
mean flow) in an annular duct. Thus any flow that
was induced was totally due to the bump collapse.
The time histories of the pressure at a few locations



along the duct were collected and compared to the
CFD results. The comparisons were very good and
the results have been presented in an earlier paper>.
Thus, the CFD methods were verified for the prob-
lem and could then be used with confidence to vali-
date the design concept of the actual pulse generator
at the design conditions with mean flow.

One objective of this paper is to promote the ex-
periment data as a test case for CFD codes with
deforming boundary capability. Another objective
is the understanding of the sensitivities of specific
CFD methods used for the analysis. The CFD meth-
ods were coded into the programs DGNS2D* and
NPARC2D-DG® to solve the unsteady, compress-
ible Navier-Stokes equations. These codes and their
respective CFD methods of particular importance
to the deforming boundary capability are discussed.
Several sensitivity studies are discussed which inves-
tigated methods for implementing explicit and im-
plicit time integration, modeling the bump collapse,
imposing moving surface boundary conditions, mod-
eling the grid dynamics, computing the numerical
flux, and imposing the geometric conservation law.
The fairly simply geometry of the cases considered in
this paper allows the use of a single-block, structured
grid which deforms. The cases involve a rapidly
moving piston, for which an analytic solution is
known, and a collapsing bump in a duct, which is
compared to the experiment data.

Flow Equations

The integral form of the Navier-Stokes equations
for a time-varying, axisymmetric control volume of
one radian are
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where t is time and
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The V is the volume and S is the surface of the
control volume. The # is the surface normal vector.
The surface integrals for R are only for the axial and
radial surfaces of the axisymmetric control volume.
The $ is the axisymmetric source term
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which accounts for the surface integrals for the cir-
cumferential surfaces of the control volume. The Sp
is the area of the circumferential plane. The p is
the static pressure. The Q is the algebraic vector of
conservative variables
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where p is the density, V =ui+vj and v and v
are the axial and radial flow velocity components,
respectively. The E; is the total energy per unit
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The H is the flux dyadic, which for a mixed Eulerian-
Lagrangian description® is,

H=F-7§Q ()

The § is the velocity vector for the axial and ra-
dial control surfaces, § = z:i + y:j, which is also
known as the grid speed vector. An Eulerian de-
scription is obtained for § = 0 while a Lagrangian
description is obtained for § = V. The F is the
Cartesian flux dyadic. The z,; and y; are the axial
and radial grid speeds, respectively. The flow model
is complete with Sutherland’s formula, the definition
of the Prandtl number, and a perfect gas assump-
tion. For the present work, turbulence is not signif-
icant. The specification of boundary conditions and
an initial solution then close the system of equations.

Computational Methods

The CFD methods were coded into the DGNS2D
and NPARC2D-DG codes.

DGNS2D

The DGNS2D* code solves for the cell-vertex,
finite-volume representation of Eq.(1) in which
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where the index f is over the axial and radial faces
of the axisymmetric control volume and where

F=H-adS (6)

which is evaluated at the cell face f.
A second-order time-integration is performed
through the two-stage Lax-Wendroff method”
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where n, *, and ** are the time-level indices.
Roe’s upwind flux-difference splitting method, as
implemented in Ref. 7, is used to evaluate F' with



modifications for a moving cell face. Thus F is eval-
uated at the cell face as
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where 7, and I, are the right and left eigenvectors,
respectively. The A, are the eigenvalues and are
the only portion of the fiux which contains the grid
speeds. The eigenvalues have the form

A1=,\2=(17—5)-ﬁ (11)
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where c is the local speed of sound.
The explicit method uses the CFL condition to
determine the maximum stable time step
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where v is the CFL number and As represents the
grid spacing of the cell. The grid speeds influence the
time step through the presence of the eigenvalues.

NPARC2D-DG

The NPARC2D-DG?® code was developed from
version 2.0 of the NPARC2D®?° code to efficiently
solve unsteady, viscous, turbulent flows. NPARC2D
uses a finite-difference representation of Eq.(1) in
strong conservation form in which

At (13)
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The generalized flux components for a time-varying
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where the generalized and physical coordinates are
& € (§,n) and z; € (z,y), respectively. A transfor-
mation exists between (7,&,7) and (¢, z, y) in which
7 = t. The metrics of the axisymmetric transforma-
tion are
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where J is the axisymmetric Jacobian of the trans-
formation

J V= (zgyg — ZTo¥e) V- (15)

The finite-difference equations are approximated
spatially through the use of a second-order, central-
difference. The viscous fluxes are evaluated explic-
itly. No second-order artificial dissipation was used
for the flows discussed in this paper. NPARC uses a
pentadiagonalized approximate-factorization of the
Euler implicit time difference. NPARC2D-DG uses
a three-point, backwards time difference with a New-
ton sub-iteration procedure to provide for nominally
second-order time accuracy. Such a procedure has
been presented in several references!®1112. The it-
erative equation assuming a constant time step is
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where A is the Jacobian of F. The m is the sub-
iteration index.

The Newton iterative procedure takes advantage
of the existing NPARC solver with minor modifica-
tions. Eq.(16) is iterated at each time step until
the right-hand-side essentially becomes zero, which
assures that the finite-difference form of Eq.(1) is
satisfied. This generally requires only a few sub-
iterations at each time step since the initial solu-
tion is usually close to the solution at the new time.
Essentially, second-order time-accuracy is obtained
through the sub-iterations even though the diagonal-
ization is not time-accurate. Further time-accuracy
issues are discussed in detail by Pulliam!®.

Flow Boundary Conditions

For both codes, the boundary conditions are im-
posed explicitly. The multi-stage and sub-iteration
procedures reduce the errors in the temporal accu-
racy at the boundaries.

The flow boundary condition at the solid wall is
the mechanism through which the flow senses that
a boundary is in motion. The inclusion of the grid
speed vector § accounts for the motion of the bound-
ary. The single physical fiow boundary condition for
a slip solid wall is

p(?—g).ﬁ.—.o (17)

which is a statement that the component of the fluid
velocity in the direction of the surface normal vector
# must match the component of the grid speed vec-
tor in the direction of the surface normal vector. An



additional physical boundary condition that exists
with the case of a no slip wall is

p(V—g)-t“:o (18)
which with Eq.(17) results in the condition
V=g (19)

For the case of the flow about the collapsing
bump, the inflow and outflow boundaries for the
duct were specified as fixed conditions since the short
physical times considered in this work do not result
in an interaction of the flow in the region of sensor C
(see below) with waves reflected from the duct ends.

Geometric Conservation Law

The deformation of the grid is a source of pos-
sible errors. One must require that a uniform flow
be preserved independent of the grid motion. This
is stated in the geometric conservation law!® which
essentially relates the change in volume of the cell
to the motion of the cell faces,

dv f
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For the finite-volume representation used in
DGNS2D, Eq.(20) is solved using the two-stage,
Lax-Wendroff method to obtain VZZ2}. The solution
at time level (n + 1) is then decoded as

Qn+1 - Qﬂ+l /Vggi (21)

The geometric conservation law for the finite-
difference form of Eq.(1) is
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Applied to the Newton sub-iteration method, the
GCL can be used to find the Jacobian which yields
uniform flow
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At each sub-iteration, the new value of Q) can be
evaluated as

Q= QY gt/ Tk (29)

where J2 41 is the Jacobian as computed from the
known grid at time level (» + 1). The new solution
is then decoded as

@ = el @

Grid Regeneration and Dynamics

The collapse of the bump in the duct requires a
deformation of the single-block, structured grid at
each time step. An automated grid generation pro-
cedure is used in which the grids are generated at
all times during the analysis based on inputs of the
geometry model, grid topology, grid quality parame-
ters, and flow boundary conditions*. The single grid
block is divided into three axial sub-blocks with one
of the sub-blocks located at the bump. The grid
regeneration is localized to the sub-block contain-
ing the bump. The generation of the interior grid
is performed efficiently through the use of an alge-
braic, transfinite interpolation method applied for
each sub-block. The grid speeds are computed from
a first-order, backwards time difference of the grids.
At the start of the computation, a transfinite inter-
polation of the boundary grid speeds is used since
no previous grid exists for the time difference.

Moving Piston Expansion

A simple test case involving a deforming bound-
ary is a straight duct 10 meters long with its right
boundary moving to the right at a constant speed
of 100 m/sec, which may simulate the motion of a
piston. A centered expansion wave is formed at the
piston surface and propagates into the duct. The
method of characteristics provides for an analytic so-
lution for the flow properties with respect to space
and time!%. In the CFD computation, the entire
grid deforms axially as the wall is moved. The com-
putation was performed with both codes to a final
time of t; = 0.01 sec. Fig. 1 presents a comparison
of the spatial variation in density in the duct at the
final time. Both codes performed well with regards
to the time accuracy; however NPARC2D-DG was
slightly more dissipative and introduced oscillations
at the tail of the expansion. Both computations used
a constant time step of At = 1.25E-05 seconds and
a grid with 502 axial and 51 radial grid points.

Rapid Collapse of a Bump

The objective of this case was the generation
of an individual, well-characterized, short-duration
acoustic pulse of amplitude of 5-10% of the ambi-
ent pressure. The case involves an axisymmetric
bump formed on the hub of a constant-area annulus.
The bump collapses within one milli-second (msec)
to form a cylindrical section flush with the hub. Two
expansion pulses are formed - each traveling axially
at the speed of sound away from the bump. As they
travel along the duct, they form a planar structure.
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Figure 1: The spatial variation of density
through a centered expansion wave generated
by a rapidly moving piston.

Description of the Experiment

A diagram of the experiment test rig designed
and built at the University of Cincinnati is shown in
Fig. 2. The hub is a smooth steel pipe and the case
is a smooth acrylic (Lexan) pipe. The length of the
annulus is 127 cm. The static pressures in the duct
were measured at three locations, labeled A, B, and
C in Fig. 2, using high-response pressure transduc-
ers with a sampling speed of 100 kHz per channel.
The sensor location C is 24 channel heights from the
center of the bump and represents the distance at
which a well-characterized pulse is desired (i.e. dis-
tance to a compressor face).

The bump has a length of 9.5 cm and is formed
by the deformation of a thin-walled silicon rubber
(RTV) tube segment (called the “boot”). The de-
formation is due to the pressurization of the driver
section of a shock tube within the hub. A wire cage
which is flush to the hub supports the “boot” to
form a cylindrical section when the driver pressure
is at or below ambient conditions. The height at
the center of the bump can be adjusted by the level
of pressurization. The collapse of the bump occurs
when the diaphragm of the shock tube is burst by
the actuation of a spear mechanism. When helium
is used as the driver gas, bump collapse times of less
than 1.0 msec are observed.

Two bump heights are considered in this work:
the first one has a ratio of bump height A to duct
height H of h / H = 0.26 and the second has a ratio
of h/H = 0.50. Fig. 3 shows the initial shape of
these bumps as mechanically measured at a series of
axial stations.

Figure 2: The experiment setup and trans-
ducer locations for the duct with a rapidly
collapsing bump.

The variation in time of the height of the center
of the bump was measured using an optical laser
system and the following relation was produced for
times up to the collapse time

0 < [ (38)]

where T is the collapse time. Fig. 4 shows the be-
havior of this relation. The 26% and 50% bumps
have collapse times of 7 = 0.6 msec and T = 0.8
msec, respectively.

The variation of the shape along the rest of the
bump during the collapse was not measured; how-
ever, it was felt by intuition that the bump collapses
with a uniform displacement at each differential time
increment (uniform velocity). This would result in
the ends of the bump reaching the hub first with the
collapse moving in toward the center of the bump.

For the bump collapse occurs in initially stag-
nant conditions (no flow). Thus, the induced flow
and generated pulses are due entirely to the bump
motion without being superimposed on a mean flow.
Figs. 5 and 6 show the recorded static pressures at
sensor location C for the 26% and 50% bumps, re-
spectively. The filled circles represent every other
data point observed by the transducers. Pulses were
generated with amplitudes of approximately 6% and
10% of the ambient static pressure, respectively. Af-
ter the main pulse has passed, a smaller, decaying
oscillation is noticed, which is believed due to the
drum-like vibration of the boot and the possible re-
bounding of the boot from the hub.

Reference CFD Solution

The experiment described above represents a
good test case for CFD codes with a deforming grid
capability because the geometry is fairly simple and
since flow conditions are initially stagnant, the ini-
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Figure 3: The initial shape of the 26% and 50%
height bumps in the duct.

tial conditions for the computation are known ex-
actly. The short times involved reduce the influence
of the flow boundary conditions at the ends of the
duct and emphasize the influence of the moving solid
wall boundary conditions.

An earlier paper® discussed the accuracy of the
experiment data and comparisons with CFD results
using DGNS2D. It was determined that the experi-
ment data were highly reproducible and axisymmet-
ric. The CFD results compared well with the experi-
ment data with respect to the amplitude and motion
of the pulse at the three sensor locations for both the
26% and and 50% bump heights.

The computations presented here only compare
the CFD results and experiment data at sensor lo-
cation C. Since sensor C is the furthest sensor from
the bump, it involves a longer propagation time, and
so, a longer computation time. Thus it demands the
most from the CFD computation.

The cases were simulated using DGNS2D and
NPARC2D-DG using a variety of grid densities, time
steps, and CFD methods. Those studies are pre-
sented in the following sections. Here, we present a
set of solutions to be used as the reference for those
studies. A uniformly spaced grid of 837x14 was used
for the 26% bump height case and a grid of 838x14
was used for the 50% bump height case. A uniform,
constant time step of Af = 0.001 msec was used for
both cases to march in time from a time of ¢t =
0.0 msec to a time of ¢t = 3.0 msec. Figs. 5 and
6 show the comparison between the experiment and
computed time histories of pressures at semsor lo-
cation C. The comparisons are very good; however,
the head of the expansion is computed to be sharper
than in the experiment. The reason for this is not
known. The bump collapse model used in the com-
putations does not simulate the rebound of the boot
from the hub, and so, the larger oscillations after the
main pulse are not present in the computed results.

The above computations assume that viscosity is
not significant. A computation of the 50% bump
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Figure 4: The variation of the bump amplitude
(height of the center of the bump) with time.

height case was performed using DGNS2D in which
laminar viscosity is included. Fig. 7 shows the com-
parison of the time history of the computed static
pressures with experiment data. The effect of the
viscosity is to diminish slightly the amplitude of the
pulse, which is consistent with the dissipative nature
of fluid viscosity.

Since viscosity has only a minor effect, the re-
maining computations assume inviscid flow condi-
tions. Further, only the 50% bump height case will
be examined since it is the higher energy flow.

Characteristic Quantities of the Flow

The studies discussed below require characteris-
tic quantities of the fiow in addition to the plot of the
time history of the static pressures. One characteris-
tic quantity was obtained from the time integration
of the static pressure at sensor C,

t=3.0
I= p(t) dt. (27)
t=0.0
This quantity can be regarded as an impulse (per
unit area) of the pulse between the initial and final
times and is a measure of the energy of the pulse.
Another characteristic quantity is the time at which
the pulse returns to a pressure of 0.985 atm and is
noted as the arrival time, £*. This quantity mea-
sures the phase or position of the pulse. The refer-
ence values (Ir.y,1;,,) are computed from the CFD
solutions for each code presented in Fig. 6. These
two characteristic quantities represent the strength
and speed of the pulse.



Pressure, p, atm

5

0.93 . 4
0.0 1.0 20 3.0

1.04

101 }

098 |

095 |

Pressure, p, atm

092

0.39 . .
0.0 1.0 20 30

Figure 5: The time history of the static pres-
sure at sensor C for the 26% bump case.

Grid Resolution Study

A grid resolution study was performed using
DGNS2D in the manner suggested by Roache®s.
The grid convergence index G is a measure of the
variability of a characteristic quantity of the solu-
tion as the grid spacing is changed and is presented
as a percentage computed as

3 |e] r?

¢ = o1y

100% (28)

where the relative error ¢ is computed as

e=(fe=f1)lls (29)

The f is the characteristic quantity, which here is ei-
ther the impulse I or the arrival time t*. The pis the
order of the numerical methods, which for this work
is taken as p = 2. The r is the grid refinement ra-
tio which for this work is defined as r = Az, / Azy,
where Az is the axial grid spacing and the subscripts
¢ and f denote the coarser and finer grids, respec-
tively. A series of six uniformly-space grids were
used to perform the analyses. The same spacing
was used in the radial direction as the axial direc-
tion, and so, Az = Ay. A uniform, constant time
step of At = 0.001 msec was used. Table 1 shows
the results of the grid resolution study.

Figure 6: The time history of the static pres-
sure at sensor C for the 50% bump case.

Table 1. The results of the grid resolution
study for the 50% bump case (DGNS2D).

Az/H I GI(%) t* Gf'(%)
0.0676 0.8534 2.276 2.1779 0.661
0.0812 0.8505 0.727 2.1800 0.015
0.0947 0.8512 9.614 2.1799 0.036
0.1083 0.8596 0.799 2.1799 1.053
0.1218 0.8602 25.371 2.1819 1.246
0.1352 0.8770 2.1840

The grid convergence indices were quite low for
grid spacings of Az / H = 0.0947 and 0.0812, which
provided confidence that the flow fields were in the
asymptotic range of convergence and that the com-
puted measures were within a couple of percent of
the asymptotic numerical value. Based on this,
the computations below using both DGNS2D and
NPARC2D-DG use these grid spacing factors.

Only slight differences were noticed at the max-
imum magnitude of the pulse for the grids. The
increased grid resolution predicts less of an ampli-
tude for the pulse and brings out some small scale
oscillations after the main pulse has passed.

Time Resolution Study

A time resolution study was performed in an
analogous manner as that for the grid resolution.
A grid spacing of Az /H = 0.0947 was used for
the analyses with constant, uniform time steps of
At = 0.0012 msec, 0.001 msec, and 0.0008 msec.
Table 2 shows the results. There is essentially no
difference in the results and it is expected that the
time steps provide for good time resolution for both
DGNS2D and NPARC2D-DG.
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Figure 7: The influence of viscosity on the time
history of the static pressure at sensor C for
the 50% bump case using DGNS2D.

Table 2. The results of the time resolution
study for the 50% bump case (DGNS2D).

At (msec) I Gr(%) t* G+ (%)
0.0008 0.8513 0.057 2.1791 0.203
0.0010 0.8512 0.059 2.1799 0.286
0.0012 0.8517 2.1790

Sensitivity studies were performed to evaluate
the influence of specific CFD methods in obtaining
an accurate simulation of the bump collapse. The
sensitivities (Sy, S¢) are defined as a percentage of
error from the reference values (I,.s,1;,,),

Sr= (i) 100% (30)
Iref
and
- t:ef
St = | ——= | 100%. (31)
tref

The following sections discuss the sensitivity studies.

Bump Collapse Model Study

It was mentioned above that the shape of the
bump as it collapsed was not directly measured, but
that it was estimated to collapse with a uniform dis-
placement, which is equivalent to a uniform verti-
cal velocity over the length of the bump. However,
the velocity does vary according to the time varia-
tion of the bump height presented in Eq.(26). This
model is termed the uniform displacement model

and was coded into the CFD codes with good re-
sults, as shown in Figs. 5 and 6.

A study was performed using DGNS2D to deter-
mine the sensitivities of the computed solutions on
the choice of the bump collapse model. Two alterna-
tive models were studied. The first alternative model
was a “proportional displacement” model which as-
sumed that the bump collapsed in proportion to the
local initial bump height. Thus, the entire length of
the bump would reach the hub surface at the spec-
ified collapse time. The second alternative model
was a “linear displacement’ model which assumed
that the displacement was uniform over the length
of the bump, but was at a constant velocity with
respect to time.

The sensitivities obtained using the “propor-
tional displacement” model are presented in Table
3 as study A. The sensitivities obtained using the
“linear displacement” mode] are presented in Table
3 as study B. The sensitivities are low; however, if
one looks at Fig. 8, the differences are more clearly
seen. Although these two alternative models are not
good choices, it is clear that the solution is sensitive
to the choice of the bump collapse model.

Table 3. The sensitivities of the impulse
and arrival time with respect to specific
CFD methods. (N/A - not applicable)

DGNS2D NPARC2D-DG
Study  S; S S S,
A) 0346 1836 - n
B) 0.096 -3.669 - -
C) 1000 -100.0 -100.0  -100.0
D) 62163 1643 67.776  4.145
E) 7316 0.047 - -
F) 0.080 -0.021 -0.024  0.003
G) N/A N/A 1345 1.851
H) 3.908 0.099 -3.761  -0.099

A) Proportional displacement collapse model
B) Linear displacement collapse model

C) No use of the grid speeds in the BCs

D) Neglect of the grid speeds in the flux

E) Use of a first-order flux formula

F) No use of the geometric conservation law
G) Use of only 1 sub-iteration rather than 3
H) Difference in DGNS2D and NPARC2D-DG

Flow Boundary Condition Study

A study was performed using both DGNS2D and
NPARC2D-DG to determine the sensitivities of the
computed solutions to the use of the grid speeds in
the solid wall boundary conditions. Study C deter-
mined that if the grid speeds are totally neglected in




Figure 8: The influence of the bump collapse
model on the time history of the static pres-
sure at sensor C for the 50% bump case.

the boundary conditions, the flow remains stagnant.
The sensitivities of Table 3 are then —100%. When
using DGNS2D, it was also found that using a first-
order extrapolation of variables at the boundary, as
opposed to using a zero-order extrapolation, had no
effect on the computed results. This was also true
when the curvature of the boundary was modeled
when determining the value of the wall pressure.

Flux Method Study

Study D determined the sensitivities to neglect-
ing the grid speeds in the flux computations of
DGNS2D and NPARC2D-DG. As seen in Table 3
for both codes and the plot of Fig. 9 for DGNS2D,
there is significant error with amplitude of the pulse
being overpredicted.

Study E determined the sensitivities of using just
the first-order flux formula of Roe’s flux-difference
splitting in DGNS2D. The result, as shown in Fig. 9,
was a predictable dissipation of the amplitude of the
pulse; however, the time-accuracy remained good.
Further, the higher-order oscillations are damped.

Geometric Conservation Law Study

Study F determined the sensitivities to the use
of the geometric conservation law. The sensitivities
of Table 3 show that the exclusion of the geomet-
ric conservation law had negligible effect for either
code. This result did not change when larger time
steps were used for the computation, which would
result in a greater change in cell volume per time
step. The largest time steps examined resulted in a
degraded solution, and so, did not represent suitable
time steps for the computation. The insensitivity

Figure 9: The influence of the flux methods on
the time history of the static pressure at sen-
sor C for the 50% bump case using DGNS2D.

of the geometric conservation law can partially be
explained in that the maximum cell deformation in-
volves a change in volume of 39uniform cell volume
at the end of the bump collapse when the grid is uni-
form. Thus for the largest time steps, the maximum
volume change per time step was at most 0.41

Sub-iteration Study

Study G determined the sensitivities to the num-
ber of sub-iterations used in the implicit method of
NPARC2D-DG. Table 3 shows that there was only
a slight difference in the sensitivities between the
use of 1 sub-iteration per time step to the use of 3
sub-iterations per time step. This could be due to
the fact that the time step used was already small
enough to assure good time accuracy.

DGNS2D / NPARC2D-DG Study

Study H determined the sensitivities to the choice
of DGNS2D or NPARC2D-DG. The sensitivities to
the use of DGNS2D were computed using the re-
sults of the NPARC2D-DG solution as the reference,
and vice-versa for the sensitivities for NPARC2D-
DG. Table 3 shows that the differences between the
DGNS2D and NPARC2D-DG were fairly small.

Grid Regeneration Efficiency

The sub-blocking of the grid results in only about
7.2% of the grid (the grid near the bump) being
regenerated at each time step. A linear relation-
ship has been observed between the grid dynam-
ics level (percentage of regenerated grid points) and
the amount of additional CPU time required for the
grid regeneration. A 100% grid regeneration level




required about 89% more CPU time. Thus, a 7.2%
grid regeneration level only required 6.4% more CPU
time.

Summary and Conclusions

The experiment described provides a good test
case for CFD codes with a deforming boundary capa-
bility because the fluid motion is due entirely to the
deforming boundary. Further, the geometry and ini-
tial and boundary conditions are fairly simple. Sen-
sitivity studies were performed to understand the
importance of specific CFD methods for the accu-
rate simulation of the flow. Of primary importance
were the bump collapse model, solid wall boundary
conditions, and flux computation. The geometric
conservation law was not of critical importance for
the conditions of this problem.
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